
Building a Parallel Cloud Storage
System using OpenStack’s Swift Object
Store and Transformative Parallel I/O

Parallel Cloud Storage as an Alternative Archive Solution

or

Kaleb Lora Andrew “AJ” Burns Martel Shorter

Esteban Martinez

LA-UR-12-23631

Overview

�  Our project consists of bleeding-edge research into
replacing the traditional storage archives with a parallel,
cloud-based storage solution.

�  Used OpenStack’s Swift Object Store cloud software.

�  Benchmarked Swift for write speed and scalability.

�  Our project is unique:
�  Swift is typically used for reads
� We are mostly concerned with write speeds

Tools/Software

SWIFT

S3QL

PLFS
•  Swift
•  FUSE
•  S3QL
•  PLFS

Typical Swift Setup

Proxy node

Auth Node

Swift Component Servers
�  Swift-proxy—Serves as the proxy server to the

actual storage node. Ties all components together.

�  Swift-object—Read, write, delete blobs of data
(objects).

�  Swift-container—Lists and specifies which objects
belong to which containers.

�  Swift-account—Lists the containers of Swift.

S3QL
�  Full-featured Unix filesystem.

�  E.g.: /mnt/s3ql_filesystem/

�  Stores data online using backends:
�  Google Storage
�  Amazon S3(Simple Storage Service)
�  OpenStack

�  Favors simplicity.

�  Dynamic capacity.

Parallelization via N-N and
N-1-N

�  PLFS is LANL’s own approach to parallelized data storage.

�  Appears as an N-1 write(left), but actually is an N-1-N write(right).

N-N N-1-N

How the Four Applications
Interact

PLFS

FUSE

S3QL

FUSE

S3QL

FUSE

S3QL

…

…

Swift

Application

Baseline Performance
Testing
Single Node Tests

Baseline Test Setup

�  Wrote a script to write various block and file
sizes

�  Wrote 1GB, 2GB, and 4GB files

�  Tested multiple configurations
�  single write to a single file system
�  single write to single PLFS mounted file

system
�  3 separate writes to 3 file systems

simultaneously

�  Graphed the results to watch trends

Found Ideal Block Size

FUSE S3QL Swift

Discovered FUSE Limitations

FUSE PLFS FUSE S3QL Swift

Local Parallelization Increased
Performance

Baseline Performance
Testing was Successful

�  We found an ideal block size.

�  Single node parallelization is efficient

�  FUSE is a limiter in our setup

�  Single write performance was in line with normal
cloud storage performance (~25-30MB/s)

Target Performance
Testing

Parallelization Benchmarking and Scalability

Target Performance Testing
Used Multiple Nodes

�  Used Open MPI for parallelizing tests across the
whole cluster.

�  Tested performance scaling from 1 to 5 hosts.

�  We were able to get 40 processes running at once
because each host contained 8 cores.

N to N Write Tests had
Interesting Results

�  Immediate performance improvement with adding
nodes even with a small number of processors per
node

�  Also noticed spikes of increased performance at
each number of processes that was a multiple of
the number of hosts we were using

�  Stable, didn't break the S3QL mounts to the Swift
containers

2-3 Host Test Results

O
p
en

M

P
I

Host 1

1
G

igE

Host 2

1
G

igE

Host
1

1
G

igE

Host
2

1
G

igE

Host
3

1
G

igE

O
p
en

M

P
I

4-5 Host Test Results
Host
1

1
G

igE

Host
2

1
G

igE

Host
3

1
G

igE

Host
4

1
G

igE

Host
1

1
G

igE

O
p
en

M

P
I

Host
2

1
G

igE

Host
3

1
G

igE

Host
4

1
G

igE

Host
5

1
G

igE

O
p
en

M

P
I

Our Tests Show Cloud
Storage Scales Well

�  Performance scales linearly as you increase the
number of hosts being used for MPI

Read speeds are fast but
don't tell the whole story

�  Incredibly fast due to caching

�  Scales very well as you increase the number of
hosts being used

More work needs to be done
with PLFS and S3QL

�  PLFS performance results were similar to N to N
performance results but added enough instability
to the S3QL mounts that many failures prevented a
complete set of tests

Cloud Storage is a Viable
Option for Archiving

�  Parallel cloud storage is possible and has good
scalability in the N to N case.
�  Linear as nodes were added

�  More work will need to be done to get PLFS working
without breaking the S3QL mounts.

 Future Work and
Conclusion

Further research possibilities of cloud parallelization

Future Testing

�  Test write performance impacts of increased S3QL
cache sizes.

�  Test CPU load impact of S3QL uncompressed vs the
default LZMA compression

�  Test swift tuning parameters to handle concurrent
access for added stability of PLFS testing.

Other File Systems That
Could Be Tested

�  Test GlusterFS and Ceph as alternative cloud
solutions to swift

Why is Cloud Storage a
Viable Archive Solution

�  Container management for larger parallel archives
might ease the migration workload..

�  Many tools that are written for cloud storage could be
utilized for local archive.

�  Current large cloud storage practices in industry could
be utilized to manage a scalable archive solution.

Acknowledgements
�  LANL

�  Dane Gardner (New Mexico Consortium)

�  H.B. Chen, Benjamin McCleland, David Sherill, Alfred Torrez, Pamela Smith,
and Parks Fields (High Performance Computing Division)

Questions?

