Building a Parallel Cloud Storage System using OpenStack's Swift Object Store and Transformative Parallel I/O

or

Parallel Cloud Storage as an Alternative Archive Solution

Kaleb Lora

Andrew "AJ" Burns

Martel Shorter

Esteban Martinez

LA-UR-12-23631

Overview

- Our project consists of bleeding-edge research into replacing the traditional storage archives with a parallel, cloud-based storage solution.
- Used OpenStack's Swift Object Store cloud software.
- Benchmarked Swift for write speed and scalability.
- Our project is unique:
 - Swift is typically used for reads
 - We are mostly concerned with write speeds

Tools/Software

- Swift
- FUSE
- S3QL
- PLFS

Typical Swift Setup

Swift Component Servers

- **Swift-proxy**—Serves as the proxy server to the actual storage node. Ties all components together.
- **Swift-object**—Read, write, delete blobs of data (objects).
- **Swift-container**—Lists and specifies which objects belong to which containers.
- Swift-account—Lists the containers of Swift.

S3QL

- Full-featured Unix filesystem.
 - E.g.: /mnt/s3ql_filesystem/
- Stores data online using backends:
 - Google Storage
 - Amazon S3(Simple Storage Service)
 - OpenStack
- Favors simplicity.
- Dynamic capacity.

Parallelization via N-N and N-1-N

- PLFS is LANL's own approach to parallelized data storage.
- Appears as an N-1 write(left), but actually is an N-1-N write(right).

How the Four Applications Interact

Baseline Performance Testing

Single Node Tests

Baseline Test Setup

- Wrote a script to write various block and file sizes
- Wrote 1GB, 2GB, and 4GB files
- Tested multiple configurations
 - single write to a single file system
 - single write to single PLFS mounted file system
 - 3 separate writes to 3 file systems simultaneously
- Graphed the results to watch trends

Found Ideal Block Size

Discovered FUSE Limitations

Local Parallelization Increased Performance

Baseline Performance Testing was Successful

- We found an ideal block size.
- Single node parallelization is efficient
- FUSE is a limiter in our setup
- Single write performance was in line with normal cloud storage performance (~25-30MB/s)

Target Performance Testing

Parallelization Benchmarking and Scalability

Target Performance Testing Used Multiple Nodes

- Used Open MPI for parallelizing tests across the whole cluster.
- Tested performance scaling from 1 to 5 hosts.
- We were able to get 40 processes running at once because each host contained 8 cores.

N to N Write Tests had Interesting Results

- Immediate performance improvement with adding nodes even with a small number of processors per node
- Also noticed spikes of increased performance at each number of processes that was a multiple of the number of hosts we were using
- Stable, didn't break the S3QL mounts to the Swift containers

2-3 Host Test Results

4-5 Host Test Results

Our Tests Show Cloud Storage Scales Well

 Performance scales linearly as you increase the number of hosts being used for MPI

Read speeds are fast but don't tell the whole story

- Incredibly fast due to caching
- Scales very well as you increase the number of hosts being used

More work needs to be done with PLFS and S3QL

 PLFS performance results were similar to N to N performance results but added enough instability to the S3QL mounts that many failures prevented a complete set of tests

Cloud Storage is a Viable Option for Archiving

- Parallel cloud storage is possible and has good scalability in the N to N case.
 - Linear as nodes were added
- More work will need to be done to get PLFS working without breaking the S3QL mounts.

Future Work and Conclusion

Further research possibilities of cloud parallelization

Future Testing

- Test write performance impacts of increased S3QL cache sizes.
- Test CPU load impact of S3QL uncompressed vs the default LZMA compression
- Test swift tuning parameters to handle concurrent access for added stability of PLFS testing.

Other File Systems That Could Be Tested

 Test GlusterFS and Ceph as alternative cloud solutions to swift Why is Cloud Storage a Viable Archive Solution

- Container management for larger parallel archives might ease the migration workload..
- Many tools that are written for cloud storage could be utilized for local archive.
- Current large cloud storage practices in industry could be utilized to manage a scalable archive solution.

Acknowledgements

• LANL

- Dane Gardner (New Mexico Consortium)
- H.B. Chen, Benjamin McCleland, David Sherill, Alfred Torrez, Pamela Smith, and Parks Fields (High Performance Computing Division)

Questions?